On the Ramsey multiplicity of complete graphs

نویسنده

  • David Conlon
چکیده

We show that, for n large, there must exist at least nt C(1+o(1))t 2 monochromatic Kts in any two-colouring of the edges of Kn, where C ≈ 2.18 is an explicitly defined constant. The old lower bound, due to Erdős [E62], and based upon the standard bounds for Ramsey’s theorem, is nt 4(1+o(1))t 2 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

There exist graphs with super-exponential Ramsey multiplicity constant

The Ramsey multiplicity M(G; n) of a graph G is the minimum number of monochromatic copies of G over all 2-colorings of the edges of the complete graph Kn. For a graph G with a automorphisms, v vertices, and E edges, it is natural to define the Ramsey multiplicity constant C(G) to be limn→∞ M(G;n)a v!(nv) , which is the limit of the fraction of the total number of copies of G which must be mono...

متن کامل

A note on the Ramsey number and the planar Ramsey number for C4 and complete graphs

We give a lower bound for the Ramsey number and the planar Ramsey number for C4 and complete graphs. We prove that the Ramsey number for C4 and K7 is 21 or 22. Moreover we prove that the planar Ramsey number for C4 and K6 is equal to 17.

متن کامل

Generalized Ramsey Theory for Multiple Colors

In this paper, we study the generalized Ramsey number r(G, , . . ., Gk) where the graphs GI , . . ., Gk consist of complete graphs, complete bipartite graphs, paths, and cycles. Our main theorem gives the Ramsey number for the case where G 2 , . . ., G,, are fixed and G, ~_C, or P,, with n sufficiently large . If among G2 , . . ., G k there are both complete graphs and odd cycles, the main theo...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorica

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2012